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Abstract
Higher-order networks (HONs), which go beyond the limitations of pairwise relation modeling by
graphs, capture higher-order dependencies involving three or more components for various
systems. As the number of potential higher-order dependencies increases exponentially with both
network size and the order of dependency, it is of particular importance for HON models to
balance their representation power against model complexity. In this study, we propose a method,
significant k-order dependencies mining (SkDM), based on hypothesis testing and the Markov
chain Monte Carlo (MCMC), to identify significant higher-order dependencies in real systems.
Through synthetic clickstreams with elaborately designed higher-order dependencies, SkDM shows
a powerful ability to correctly identify all significant dependencies at preset significance levels of
α= 0.01, 0.05, 0.10, performing as the only method, in comparison to the state of the arts, that can
robustly maintain the Type I error rate, and without generating any Type II error across all the
experimental settings. We further apply the SkDMmethod to various empirical networks,
including journal citations, air traffic, and email communications. Empirical results show that
among those tested networks, only 6.03%, 1.47%, and 1.28% of all potential dependencies are of
statistical significance (α= 0.01). The proposed SkDMmethod, therefore, provides an efficient
tool for higher-order network analysis tasks at reduced computational complexity.

1. Introduction

Complex networks are essential tools for describing different systems comprising a large number of
interacting components, such as biological systems, transportation systems, power systems, and so on [1–3].
Conventionally, components and direct interactions between them are represented as nodes and links,
respectively, giving rise to the first-order network (FON) representation. However, traditional network
models assuming the Markov property (first-order dependency) capture only pairwise interactions but lose
higher-order dependencies involving three or more components in systems [4]. Yet, higher-order
dependencies in real-world systems are ubiquitous, sequential and better explain how the components,
directly and indirectly, influence each other [5–8]. For example, in a shipping traffic system, ports that a ship
has arrived at in the past may heavily influence the ship’s next destination [5]. In the citation analysis of
publications, the outputs of citation flow from a journal depend on where the citations come from [9, 10]. In
Web user clickstreams, the user’s next page visit is affected by previous clicks [5]. As a result, traditional
network modeling techniques only provide a limited representation of complex systems. In contrast,
higher-order network models (HONs) that better capture many-body interactions can improve the analysis
of various network analysis tasks [11–17]. Recent work has developed four different lines of modeling
approaches to embed higher-order dependencies into HON models, including hypergraph models [11,
18–22], simplicial complex models [16, 23–30], motif-based higher-order models [31–38] and higher-order
Markov models [5, 6, 9, 39–43].

The first three models capture many-body interactions using higher-order structures such as hyperedges,
simplices, and motifs and uncover the higher-order dynamics in complex systems, such as percolation,
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diffusion, contagion and synchronization processes. In hypergraphs, nodes represent components and
hyperedges represent many-body interactions. The size of a hyperedge is the number of components in the
corresponding many-body interaction. Many studies have shown that hypergraphs have an essential
influence on dynamical processes [18–22]. For example, hypergraphs could enhance the synchronization in
the coupled oscillator systems using a Kuramoto model and combinatorial Laplace operators [18–20].
Alvarez-Rodriguez et al [21] investigated the evolutionary dynamics of public goods games in social systems
using hypergraphs, demonstrating how hubs and higher-order interactions influence the evolution of
cooperation in systems. Further, Kumar et al [22] introduced many-body interactions into sender-receiver
games, revealing that moral behavior could evolve on higher-order social networks, even when facing the
temptation to lie.

In simplicial complexes, simplices describe many-body interactions between components in a complex
system [12]. Compared to hypergraphs, simplicial complexes have a restrictive constraint that given a
simplex, all its sub-simplices must exist in the system [23, 24]. Many studies have investigated the influence
of simplicial complexes on network dynamical processes [16, 25–30]. Chen et al [16] proposed an extended
bond percolation model on simplicial complexes, revealing that synergistic protection could enhance
network robustness. In order to describe the effects of many-body interactions in contagion processes, the
mean field approach (MFA) [25], the microscopic Markov chain approach (MMCA) [27, 28] and epidemic
link equations (ELE) [28] have been applied to obtain analytical results of simplicial contagion models
(SCMs). Results have shown that many-body interactions could lead to a discontinuous phase transition and
time-varying higher-order simplices impede contagion processes [25–28]. Parastesh et al [29] investigated
the synchronization process of a simplicial complex of Hindmarsh–Rose neurons, demonstrating that weaker
second-order interactions can significantly reduce synchronization costs. Gao et al [30] proposed a
reaction-diffusion model embedded in simplicial complexes to study the formation of Turing patterns,
revealing a strong correlation between the structure of Turing patterns and the average degree of
higher-order connections in simplicial complexes.

Dense subgraphs, called motifs, could also encode higher-order connectivity patterns. A generalized
higher-order network analysis framework based on motifs has been developed, such as motif-based spectral
clustering algorithms [31–33], higher-order clustering coefficients [34, 35], algorithms for fast counting
temporal motifs [36], higher-order link prediction frameworks [37, 38], higher-order motif closures [38]
and so on. Results have shown that motif-based higher-order modeling framework provided a foundation
for developing network analysis methods.

The fourth type of method for HON modeling is higher-order Markov models, which extract k-order
dependencies from sequential data based on higher-order Markov chains and demonstrate that such patterns
with memory effects would affect various network analysis tasks [6]. To fully keep into account higher-order
dependencies of real systems, many modeling frameworks have been proposed, such as second-order Markov
network models [9, 39], the kth order aggregate network model [40], the sparse memory network model [41],
the multi-order graphical model [42], the BuildHONmodel [5], the BuildHON+model [44], the generative
multi-order model [43] and so on. For example, based on the Kullback–Leibler divergence and entropy rates,
the BuildHONmodel, which can overcome the limitations of fixed-order networks, incorporated variable
orders of dependencies in systems [5]. Compared with the first-order network, it yields more accurate results
on random walking, clustering and ranking. Furthermore, BuildHON+ was proposed and it outperformed
other state-of-the-art algorithms in node classification [45] and anomaly detection [44] of sequential data.

Most of the research on HONs has only shown their high representative power and accuracy compared to
FONs. Although these models successfully capture higher-order dependencies in complex systems, due to the
increase of both network size and the order of dependency, current studies have been constrained to
exponentially growing higher-order dependencies. As the representative power of a HON model increases,
the complexity of network analysis tasks increases. Thus, it is critical for researchers to design an algorithm to
select and embed the most significant higher-order dependencies into HON models to reduce a model’s
complexity. As far as we know, there is no generic mechanism to identify significant higher-order
dependencies in real systems. In this work, we propose a framework, significant k-order dependencies
mining (SkDM), based on the hypothesis testing and Markov chain Monte Carlo (MCMC) method, to focus
on significant higher-order dependencies: recurring, significant, dependent patterns. We implement SkDM
on two elaborately designed synthetic clickstream datasets with variable orders of dependencies—the CK1
dataset and the CK2 dataset—to validate the effectiveness of the proposed method. Furthermore, we use
SkDM to extract significant higher-order dependencies from three real-world datasets covering journal
citations, air traffic, and email communications—the APS dataset, the DB1B dataset, and the Enron Email
dataset—to investigate the impacts of higher-order dependencies on network flow patterns.
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2. Methods

2.1. Higher-order Markov network model
A system (V, S) is defined with S= {p1,p2, · · · ,pN} the set of sequences and V= {v0,v1, . . . ,vm−1} the
component set, where pi = (vα → ·· · → vβ) for vα,vβ ∈ V is an ordered record of li + 1 vertices. Based on a
first-order Markov model, the system could be represented as a graph G(1) =

(
V(1),E(1)

)
with first-order

nodes V(1) and directed edges E(1) ⊆ V(1) ×V(1), where (vi,vi+1) ∈ E(1) for i ∈ [0, li − 1] is defined in pi. A
k-1th order dependency with k nodes extracted from sequential data S could be defined as I= [vα, . . . ,vβ ] for
vα,vβ ∈ V, aggregated in the set Γ = {I0, I1, . . . , In}. Based on higher-order Markov chains, real systems
(V,S,Γ) could naturally be represented as conditional probability models [42, 46].
First-orderMarkov networkmodel. First-order networks rest on the assumption of Markovian property

(first-order Markov process) which is memoryless-a random walker’s next destination only depends on the
currently visited component and is independent of its history [47, 48]. For example, when a walker is a web
user, the first-order Markov model for user navigational behaviors assumes that the next page they visit
depends solely on the current page and not on historical clickstreams. Given a real system (V, S), we view
each component as a state and direct interactions between components as potential transitions in a standard
Markovian network model. The model can be written as follows:

P(vi+1|v0 → v1 → ·· · → vi) = P(vi+1|vi) , (1)

where P(vi+1|vi) is the transition probability of a walker moving from first-order node vi to first-order node
vi+1. The first-order transition probability matrix P(1) is given by

P(1) =


p11 p12 · · · p1|V(1)|
p21 p22 · · · p2|V(1)|
...

...
. . .

...
p|V(1)|1 p|V(1)|2 · · · p|V(1)||V(1)|

 , (2)

pij = p
(
vi → vj

)
=

W
(
vi → vj

)∑
k
W(vi → vk)

, (3)

where
∣∣V(1)

∣∣ represents the number of elements in V(1) and the transition probability from first-order node
vi to first-order node vj is proportional to the edge weightW(vi → vj).

k-order Markov network model. The properties of the first-order Markov model indicates that it would
be too simplistic for capturing higher-order dependencies that impact network analysis tasks, such as
ranking, clustering, and link prediction [5, 41]. Since higher-order Markov chains are processes that could
keep the impact of the past few states on the walker’s next step, it can be used to capture higher-order
dependencies to improve the accuracy of the representation of real systems. For example, a k-order Markov
chain model (Mk) holds that a walker’s next movement depends on the last k components visited.

In order to embed higher-order dependencies in systems, it is critical to reconstruct the network. A
first-order node can be split into different higher-order nodes based on variable-order dependencies [5]. For
instance, based on a k-order dependency vi−k+1 → ·· · → vi → vi+1, the first-order node vi can be broken
down into a k-order node vi|vi−1, . . . ,vi−k+1 (vi given the previous k-1 components visited), which contains
a series of entities [vi−k+1, . . . ,vi−1,vi]. Noticeably, the k-order node vi|vi−1, . . . ,vi−k+1 belongs to the
first-order node vi. Furthermore, the directed edge from the k-order node vi|vi−1, . . . ,vi−k+1 to the
first-order node vi+1 represents the k-order dependency vi−k+1 → ·· · → vi → vi+1. The HON model with
k-order dependencies can be written as follows:

P(k) := P(vi+1|vi−k+1 → ·· · → vi) (4)

= P(vi+1|(vi|vi−1, . . . ,vi−k+1)) , (5)

P(vi+1 | (vi | vi−1, . . . ,vi−k+1)) =
W(vi | vi−1, . . . ,vi−k+1 → vi+1)∑

jW
(
vi | vi−1, . . . ,vi−k+1 → vj

) , (6)

where P(vi+1|vi−k+1 → ·· · → vi) is the probability that a random walker moves from vi to vi+1 based on its
(k-1)-step memory. P(vi+1|(vi|vi−1, . . . ,vi−k+1)) stored in the k-order matrix P(k) is the transition
probability from node vi|vi−1, . . . ,vi−k+1 to node vi+1, which is proportional to the edge weight
W(vi|vi−1, . . . ,vi−k+1 → vi+1).
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2.2. Significant k-order dependencies mining (SkDM)
Higher-order dependencies go beyond pairwise interactions and could better explain how the components
directly and indirectly influence each other. Naturally, HON models embedding higher-order dependencies
improve their descriptive powers and the accuracy of network analysis tasks [12]. However, the exponentially
increased number of potential higher-order dependencies introduces problems such as high computational
complexity and ‘state space explosion’. It is critical to develop a method to identify significant higher-order
dependencies from the system to reduce the complexity of HON models.

We develop a two-tailed statistical test framework, significant k-order dependencies mining (SkDM),
based on hypothesis testing and the MCMCmethod to select significant higher-order dependencies from
systems. The central topic is to focus on significant higher-order dependencies: Connected and sequential
patterns occur in real-world complex systems at numbers significantly higher or lower than those in
randomized networks generated according to the first-order transition probability matrix. Here, we plan to
generate many randomized networks with the same first-order transition probability matrix as the real
network: Each node in the randomized network has the same first-order transition probability as the
corresponding node in the real network. In order to obtain randomized networks, we first generate 1000
simulation datasets with 106 trajectories using the MCMCmethod [49–51]. Then, we extract k-order
dependencies from simulation datasets and compute the corresponding k-order transition probabilities
based on higher-order Markov chains. Furthermore, we propose the hypothesis testing framework for
judging whether a k-order dependency ϕ is significant. Specifically, the null hypothesis (H0) and the alternate
hypothesis (H1) can be described as:

H0: A k-order dependency ϕ is not significant such that

preal (ϕ) = prandom (ϕ), (7)

θ̂ = prandom (ϕ). (8)

H1: A k-order dependency ϕ significantly exists in the real system.

preal (ϕ) ̸= prandom (ϕ), (9)

where preal (ϕ) is the transition probability of k-order dependencies in real systems and prandom (ϕ) is the
sample mean θ̂ of transition probabilities of k-order dependencies in simulation datasets.

According to the central limit theorem, the distribution for a sample mean is approximately normally
distributed for large simulation datasets [52, 53]. Therefore, we establish a standard normal random variable
z-score (Z) as a test statistic

Z=
prandom (ϕ)− preal (ϕ)

SD(prandom (ϕ))
, (10)

σθ̂ = SD(prandom (ϕ)) , (11)

where SD(prandom (ϕ)) is the standard deviation σθ̂ of transition probabilities of k-order dependencies in
simulation datasets. Then we could derive a confidence interval with a confidence level 1−α based on the
population mean θ of transition probabilities of k-order dependencies in simulation datasets, as shown in
equation (11) [52, 54, 55]

P
(
−zα/2 ⩽ Z⩽ zα/2

)
= P

(
−zα/2 ⩽

θ̂− θ

σθ̂

⩽ zα/2

)
(12)

= P
(
−zα/2 ×σθ̂ + θ̂ ⩽ θ ⩽ zα/2 ×σθ + θ̂

)
(13)

= 1−α. (14)

In addition, we introduce the p-value to represent the extent that the test statistic disagrees with H0. The
p-value is the probability of finding that the value of a test statistic (such as Z) is at least as contradictory to
H0, assuming H0 is correct [56]. We could reject the null hypothesis when the p-value is less than the
significance level α.

p−value= P
(
Z⩾ zα/2

)
+ P

(
Z⩽−zα/2

)
. (15)

In this study, we take z0.005 = 2.58, and the 99% confidence interval (α= 0.01) is[
−2.58×σθ̂ + θ̂, 2.58×σθ̂ + θ̂

]
. (16)
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Finally, we decide whether to accept or reject the null hypothesis. Since SkDM is of the two-tailed
statistical test, both [−∞,−2.58×σθ̂ + θ̂] and [2.58×σθ̂ + θ̂,∞] are rejection regions. When the transition
probability preal(ϕ) of k-order dependencies in real systems falls in the rejection regions or the absolute value
of Z is bigger than 2.58 (|Z|> z0.005), we reject the null hypothesis and then obtain the significant k-order
dependency ϕ.

2.3. Baselines
Here we compare the performance of SkDM with a classical sequential pattern mining method and two
higher-order modeling methods: the Prefix-projected Sequential Pattern Mining algorithm (PrefixSpan), the
multi-order graphical modeling framework (MON) and BuildHON+.

PrefixSpan quickly mines the complete set of sequential patterns in the database and greatly reduces the
computation complexity [57]. It first scans the database to find the frequent 1-sequences and generates the
projected database for each frequent 1-sequence. In this way, Prefixspan recursively generates the projected
database for each frequent k-sequence to find frequent (k+1)-sequences. It has aminSup threshold, which
represents the minimum support required to be considered a frequent sequential pattern.

MON is a nested structure of multi-order graphical models which could infer higher-order dependencies
at multiple lengths and capture topological and temporal characteristics of real-world datasets [42, 43]. For
example, two multi-order models M̄K and M̄K+1 incorporate dependencies up to maximum orders K and
K + 1 respectively. M̄K is considered as the null model, and M̄K+1 is the alternative model. The p-value of the
null model M̄K is as follows,

p= 1−
γ
(

d(K+1)−d(K)
2 ,− log L(M̄K|S)

L(M̄K+1|S)

)
Γ
(

d(K+1)−d(K)
2

) , (17)

where S is the sequential dataset and d(K) are the degrees of freedom of M̄K. The likelihood ratio
L(M̄K|S)

L(M̄K+1|S)
represents the relative fitness between the alternative model and the null model, given the observed dataset. Γ
is the Euler Gamma function and γ is the lower incomplete gamma function. The algorithm iteratively
checks whether the p-value is below a significance threshold ϵ or not. If the p-value is below ϵ, we reject the
alternative model M̄K. This process continues until the maximum order Kopt is reached, where the p-value
exceeds ϵ. Here, we set ϵ as 0.001 (ϵ= 0.001).

BuildHON+ is a scalable and parameter-free algorithm based on the Kullback–Leibler divergence,
designed to extract variable and higher-order dependencies from big data [44]. A k-order dependency ϕ
could extend to ϕ ext of order kext = k+ 1 when the distribution of ϕ ext (Dext) is significantly different from
the distribution of ϕ (D). BuildHON+ uses the Kullback–Leibler divergence measuring the difference
between ϕ and ϕ ext, as shown in equation (18),

DKL (Dext∥D)> δ =
kext

log2 (1+ Support(ϕ ext))
(18)

where δ is a dynamic threshold and Support(ϕ ext) is the number of observations ϕ ext. WhenDKL (Dext∥D) is
bigger than δ, the k-order dependency ϕ could extend to ϕext of order kext.

3. Model validation and comparison

To validate the effectiveness of the proposed method, we apply SkDM to two elaborately designed synthetic
clickstream datasets containing variable orders of dependencies, the CK1 dataset and the CK2 dataset. The
CK1 dataset incorporates only first-order dependencies, while the CK2 dataset includes both first and
second-order dependencies.

3.1. Synthetic data
First, we assumed 1000 users navigating through 100 web pages, arranged in a 10 × 10 grid and indexed
from 0 to 99. Each page had 2 out-links to neighboring pages, including a down-link and a right-link with
wrapping, i.e. a user could move from a rightmost page to the leftmost page in the same row or from a
bottom page to the top page in the same column. Each user started from a random page numbered from 0 to
99 and navigated through 100 pages within the given time. As a result, each clickstream dataset contained
1000 records with 100 000 clicks in a period.

We aimed to generate two synthetic clickstream datasets with variable orders of user navigating
dependencies, the CK1 and CK2 datasets. The CK1 dataset contained only first-order dependencies: Each
user had a 50% chance of moving rightward or downward in the next step. Keeping the previous (first-order)
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Figure 1. Significant second-order dependencies (α= 0.01) extracted from two synthetic clickstream datasets: the CK1 and CK2
datasets. (a) Two synthetic web clickstream datasets, the CK1 and CK2 datasets, with variable orders of user-navigating
preferences on 100 web pages as a 10 × 10 grid. The CK1 dataset contains only first-order dependencies: Each user had a 50%
chance of navigating to the page on the right and 50% chance of navigating down in the next step. Twelve second-order
dependencies on pages 25, 51 and 77 are embedded in the CK2 dataset, such as 15→25→26, 24→25→35, 41→51→52. For
example, the second-order dependency 15→25→26 represents that users coming from page 15 to page 25 are more likely to click
on page 26 rather than page 35. (b)–(c) The horizontal axis represents the last target component vk in a second-order dependency
vi → vj → vk. The vertical axis represents the second-order node vj|vi which is the series of the first two components in a
second-order dependency vi → vj → vk. For example, the second-order node 51|41 represents page 51 given page 41 as the
previous step. SkDM extracts 4 significant second-order dependencies (highlighted in saddle brown) out of 400 potential
second-order dependencies (highlighted in orange) from the CK1 dataset (see (b)). All 12 significant second-order dependencies
are correctly extracted by SkDM from the CK2 dataset and represented in the higher-order clickstream network (see (c)).

dependencies, the CK2 dataset introduced 12 second-order dependencies to keep its first-order transition
probability matrix P(1) the same as the first dataset. The imposed second-order dependencies were that (1)
all users coming from page 24 to 25 (50 to 51, 76 to 77) would have a 10% chance of moving right (pd = 0.1)
and a 90% chance of moving down (1− pd = 0.9) in the next step; (2) all users coming from page 15 to 25
(41 to 51, 67 to 77) would have a 90% chance of moving right (1− pd = 0.9) and a 10% chance of moving
down (pd = 0.1) in the next step; (3) all users coming from page 50 to 51 would have a 10% chance of
moving right (pd = 0.1) and a 90% chance of moving down (1− pd = 0.9) in the next step; (4) all users
coming from page 41 to 51 would have a 90% chance of moving right (1− pd = 0.9) and a 10% chance of
moving down (pd = 0.1) in the next step; (5) all users coming from page 76 to 77 would have a 10% chance
of moving right (pd = 0.1) and a 90% chance of moving down (1− pd = 0.9) in the next step; and (6) all
users coming from page 67 to 77 would have a 90% chance of moving right (1− pd = 0.9) and a 10% chance
of moving down (pd = 0.1) in the next step. Figure 1(a) shows these defined dependencies in a 10 × 10 grid.

3.2. Model validation
Since our goal is to find significant second-order dependencies in the web clickstream datasets, the null
hypothesis (H0) and alternate hypothesis (H1) in the selection process of SkDM can be described as follows:

H0: the selected second-order pattern ϕ is not a significant dependency in the dataset;
H1: the selected second-order pattern ϕ is a significant dependency in the dataset.

6
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Figure 2. Type I error rates at different significance levels (α= 0.01, 0.05, 0.10) by SkDM. The horizontal axis represents different
values of parameter α. The left y-axis shows the significance level and the right y-axis shows the probability of making a type I
error.

Since SkDM can yield only one of two outcomes for each second-order pattern, either rejecting or not
rejecting H0, the test could be subject to the type I error. Furthermore, the type I error rate (or significance
level) is represented by the probability of rejecting the null hypothesis given that it is true, denoted by α [52].

As shown in figure 1(b), our method captures 4 significant second-order patterns on page 32 at the
significance level α= 0.01 from the CK1 dataset. However, there are only first-order dependencies in the
CK1 dataset: a user currently on page 32 has the same probability of visiting page 33 and page 42 in the CK1
dataset (figure 1(b)). Thus, SkDM rejects H0 (when, in fact, it is true) and makes a type I error:

P(TypeIerror) = α=
N(FS)

N(FS)+N(TNS)
, (19)

where N(FS) is the number of false significant dependencies extracted by SkDM and N(TNS) is the number
of true non-significant patterns extracted by SkDM. Since there are 4 false significant second-order
dependencies and 396 true non-significant second-order patterns by SkDM, P(TypeIerror) is 0.010. The
result that the probability of making a type I error is equal to the preset significance level α validates our
method.

Furthermore, figure 2 presents the probabilities of making a type I error at different significance levels of
α= 0.01, 0.05, 0.10 in the CK1 dataset. The results show that SkDM could select higher-order dependencies
at different significance levels from systems to reduce computational complexity. Furthermore, we establish
two measures, the test statistic z-score (denoted as Z) and p-value, to represent the observed significance
level of each higher-order dependency (see Materials and Methods). The test statistic Z describes the distance
that test results differ from the null hypothesis, whether above or below the mean, measured in units of the
standard deviation [52, 56]. The p-value indicates the extent to which the test statistic Z disagrees with
H0 [52]. Using SkDM, we could calculate the p-values and z-scores of all higher-order dependencies to
indicate their observed significance levels (see figure 6 and tables 4–5 in appendices).

In order to evaluate the ability of SkDM to capture significant dependencies, we embed 12 second-order
dependencies on pages 25, 51, and 77 in the CK2 dataset; that is, a user’s next click depends on not only the
current page but also the previous page. For example, the probabilities of a user currently at page 25 moving
to page 26 and page 35 are pd = 0.10 and 1− pd = 0.90, respectively, if the previous click is page 24; the
probabilities of a user currently at page 25 moving to page 26 and page 35 are 1− pd = 0.90 and pd = 0.10,
respectively, if the previous click is page 15. Figure 1(b) shows that our method correctly captures all 12
significant second-order dependencies in the CK2 dataset. Using SkDM, we could also calculate the p-values
and z-scores of all higher-order dependencies to indicate their observed significance levels (see figure 7 and
tables 6–7). The above findings imply that SkDM powerfully extracts significant higher-order dependencies
to represent true flow patterns in systems.

7
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Table 1. Second-order dependencies captured by four algorithms in the CK2 dataset with different values of pd. N(d) represents the
number of patterns captured by each method. α and β represents the type I error rate and type II error rate of the four methods,
respectively.

pd = 0.10 pd = 0.20 pd = 0.30

Algorithm N(d) α β minSup
Runtime

(s) Nd α β minSup
Runtime

(s) Nd α β minSup
Runtime

(s)

PrefixSpan 12 0.00 0.00 0.37 184.14 12 0.01 0.33 0.38 184.18 12 0.03 0.83 0.35 184.16
MON 400 1.00 0.00 — 928.79 400 1.00 0.00 — 928.78 400 1.00 0.00 — 928.72

BuildHON+ 12 0.00 0.00 — 1.20 12 0.00 0.00 — 1.22 0 0.00 1.00 — 1.20
SkDM 16 0.01 0.00 — 9.80 16 0.01 0.00 — 9.88 16 0.01 0.00 — 9.92

Table 2. Second-order dependencies captured by the PrefixSpan algorithm in the CK2 dataset with different values of pd andminSup.

PrefixSpan pd = 0.10 pd = 0.20 pd = 0.30

N(d) = N(TS)+N(FS) 12 12 12
minSup 0.37 0.38 0.35
N(FS) 0 4 10
N(TNS) 388 388 378
N(FNS) 0 4 10
N(TS) 12 8 2

α= N(FS)
N(FS)+N(TNS) 0.00 0.01 0.03

β = N(FNS)
N(FNS)+ N(TS) 0.00 0.33 0.83

3.3. Model comparison
We compare the performance of SkDM with a classical sequential pattern mining method and two
higher-order modeling methods: the Prefix-projected Sequential Pattern Mining algorithm
(PrefixSpan) [57], the multi-order graphical modeling framework (MON) [42] and the BuildHON+
algorithm [44] (see Baselines). Table 1 represents the performances and average runtimes in seconds of these
four algorithms in capturing higher-order dependencies in the CK2 dataset with different values of pd
(pd = 0.10,0.20,0.30, 1− pd = 0.90,0.80,0.70).

Results show that SkDM captures 16 significant second-order patterns, of which 12 are true significant
dependencies when pd is 0.10, 0.20 and 0.30, respectively. Since there are 4 false significant dependencies
(N(FS) = 4) and 384 true non-significant second-order patterns (N(TNS) = 384) by SkDM with different
values of SkDM, the type I error rate of SkDM is 0.010. Furthermore, we could calculate the type II error rate,
which is the probability of failing to reject the null hypothesis when it is actually false, denoted by β

P(TypeIIerror) = β =
N(FNS)

N(FNS)+N(TS)
, (20)

where N(FNS) is the number of false non-significant patterns extracted by SkDM and N(TS) is the number
of true significant dependencies extracted by SkDM. Since there are 0 false non-significant patterns and 12
true significant second-order dependencies extracted by SkDM, the type II error rate of SkDM is 0.00.

As the output of PrefixSpan depends on the model parameterminSup, we represent the performance of
PrefixSpan in capturing higher-order dependencies in the CK2 dataset with different values of pd andminSup
in table 2. TheminSup threshold represents the minimum frequency a pattern must meet to be considered
frequent. In order to compare PrefixSpan with other methods, we identify the top 12 frequent patterns as
captured patterns. Subsequently, we could obtain the values ofminSup with different values of pd. In table 2,
PrefixSpan could extract all 12 second-order dependencies from the CK2 dataset when pd is 0.10, and the
type I error rate and type II error rate are both 0.00. It shows that PrefixSpan could capture all dependencies
from the dataset when pd is 0.10. However, as pd growing up, the ratio of false significant dependencies to the

total number of frequent patterns, N(FS)
N(d) also increases. When pd is 0.30, the type II error rate is as high as

0.83. It shows a large proportion of non-significant patterns among the frequent patterns when pd is 0.30.
These results indicate that PrefixSpan effectively identifies frequent sequential patterns no less than the
minimum support threshold. However, higher-order dependencies are sequential patterns with significantly
different numbers than random patterns. Furthermore, SkDM is approximately twenty times faster than
PrefixSpan (see table 1). Consequently, the PrefixSpan algorithm is not optimal for identifying higher-order
dependencies.

We observe that the MONmethod treats all 400 second-order patterns in the CK2 dataset as
dependencies when pd is 0.10, 0.20 and 0.30 (see table 1). MON could extract 388 false significant
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second-order dependencies and 0 false non-significant patterns, resulting in a type I error rate of 1.00 and a
type II error rate of 0.00 (see table 8 in appendices). Furthermore, SkDM is approximately 100 times faster
than MON (see table 1).

Table 1 shows that the BuildHON+method successfully extracts all 12 second-order dependencies when
pd is 0.10 and 0.20. However, BuildHON+ fails to identify any second-order dependencies when pd is 0.30,
resulting in a type I error rate of 0.00 and a type II error rate of 1.00 (see table 9 in Appendices). As we have
seen, compared to MON and PrefixSpan, SkDM has a relatively low rate of identifying non-significant
patterns as higher-order dependencies. Despite being a time-efficient method and demonstrating satisfactory
performance on the CK2 dataset at pd = 0.10 and pd = 0.20, BuildHON+ fails to distinguish significant
differences between first-order and second-order dependencies at pd = 0.30. In conclusion, SkDM is an
effective and robust solution to capture significant higher-order dependencies in networked systems.

4. Empirical demonstration and analysis

To study significant higher-order dependencies in real networks using SkDM, we collected three public
real-world datasets: publications of the American Physical Society (the APS Dataset), flight itineraries
between U.S. cities (the DB1B Dataset), and email communications between 146 executives in the Enron
Corporation (the Enron Email Dataset). The detailed descriptions of the datasets are as follows.

4.1. Data description
APS Dataset. The American Physical Society (APS) provides rich data based on its publications about
physics for research about networks science. The dataset covers 116 years, with 468 291 articles in nine
journals and 906 398 citations from 1893 to 2009, and is available at https://journals.aps.org/datasets
(table 11) [58]. By modeling citations between journals, we construct the APS citation network and study
interdisciplinary knowledge flows. In the APS citation network, a node represents a journal and an edge
represents a citation from one journal to another.
DB1BDataset. The DB1B dataset contains 19 415 369 itineraries between 464 U.S. airports from the first

three quarters of 2011 and is available at https://transtats.bts.gov/PREZIP/ [59]. By modeling passengers’
itineraries between 413 U.S. cities aggregated from 464 airports, we construct a U.S. air traffic network and
study passengers’ flight patterns among cities. In the U.S. air traffic network, a node represents a city and an
edge represents a passenger’s itinerary from one city to another.
Enron Email Dataset. The Enron email dataset (www.cs.cmu.edu/~enron/) contains 116 525 messages

generated by 146 senior executives from Enron Corporation disclosed during the investigation of the Enron
scandal [60]. By modeling messages, we construct an Enron email network and study the communication
patterns between senior executives. In the Enron email network, a node represents a senior executive and an
edge represents messages between them.

4.2. Extracting higher-order dependencies in citation flows
The above experiments on CK1 and CK2 show that SkDM can correctly identify higher-order dependencies
with the preset significance level. Furthermore, we apply SkDM to the APS dataset to extract significant
higher-order dependencies and investigate citation flows in the network. The APS dataset comprises 468 291
articles published in nine journals and 906 398 citations from 1893 to 2009. figure 3(a) shows significant
second-order dependencies extracted from the APS citation network by SkDM are highlighted in saddle
brown. Table 3 represents the performances and average runtimes in seconds of these four algorithms in
capturing higher-order dependencies in the APS dataset. Results show that 44 significant second-order
dependencies are filtered out from 729 potential second-order dependencies in the network, with exactly
6.03% (see table 3). SkDM is approximately eighty times faster than MON in capturing higher-order
dependencies. Therefore, by eliminating non-significant higher-order dependencies from HONmodels,
SkDM greatly reduces the computational complexity and improves the efficiency of network analysis tasks.

To show citation flows among journals, we then build eight ego HONs for eight APS journals,
simultaneously containing first-order, second-order, and third-order nodes. Figures 3(b)–(i) represents each
dependency as a path from a first-order node to a third-order node. For example, the second-order
dependency PRA→PRL→PRA is described as path PRA→PRL|PRA→PRA|PRL,PRA from the first-order
node PRA through the second-order node PRL|PRA to the third-order node PRA|PRL,PRA. Note that a
k-order node vi|vi−1, . . . ,vi−k+1 represents the component vi; for instance, the first-order node PRA and the
second-order node PRA|PRL represent the same journal, Phys Rev A. As shown in figures 3(b)–(i), we find a
‘commuting pattern’, that is, citation flows mostly return to journals where they come from. For example,
affected by Phys Rev A, the citation flow from Phys Rev Lett most likely returns to Phys Rev A (figure 3(b)).
Influenced by Phys Rev STAB, there is no network flow from Phys Rev Lett to Phys Rev B. Yet, 36.81% of
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Figure 3. Significant second-order dependencies extracted from the APS citation network. (a) Significant second-order
dependencies at the significance level of α= 0.01 are highlighted in saddle brown, such as PRA→PRL→PRA. The horizontal axis
represents the target journals in second-order dependencies. For example, PRA is the target journal of the second-order
dependency PRA→PRL→PRA. The vertical axis represents second-order nodes which are the series of the first two components
in second-order dependencies, such as PRL|PRA. (b)–(i) Eight ego HONs composed of significant second-order dependencies.
Different colors represent different journals in the APS citation network. Each node is colored based on the journal it indicates.
For example, since the second-order node PRL|PRA represents Phys Rev Lett, it is marked with yellow. The thickness of an edge is
proportional to its weight, representing the number of citations between two nodes.

publications in Phys Rev Lett are cited by Phys Rev B, ignoring references of Phys Rev Lett (see figure 8). These
findings indicate that HONs could reflect the true network flows in systems by embedding higher-order
dependencies.

4.3. Extracting higher-order dependencies in air traffic
We continue by performing SkDM on the U.S. air traffic network to capture significant higher-order
dependencies to investigate passengers’ flight patterns between different cities using the DB1B dataset. The
DB1B dataset contains 19 415 369 itineraries between 464 U.S. airports from the first three quarters of 2011.
table 3 shows that 65 212 significant second-order dependencies extracted from the network accounted for
1.47% of all potential 4448 032 second-order dependencies. Moreover, SkDM is faster than MON and
PrefixSpan in capturing higher-order dependencies. These results demonstrate that our method is extremely
efficient at filtering insignificant higher-order dependencies in systems. Figure 4(a) shows a diagonal line and
several horizontal zones composed of significant second-order dependencies marked in saddle brown. The
diagonal line suggests that passengers often return to the city they departed from; this is the commuting
pattern. Several horizontal zones show that passengers influenced by a previously visited city prefer to travel
to several fixed cities. For example, using a Sankey diagram, we find that when passengers come from Atlanta
(29), they mostly return to Atlanta or travel to other cities such as Chicago (284), Branson (50), Baltimore
(69), Detroit (124), Newark (146), Houston (197), and Minneapolis (312; figure 4(b)). Those patterns
demonstrate significant second-order dependencies in the air traffic network: a passenger’s travel to the next
city depends on the currently and previously visited cities.

To embed significant second-order dependencies into the network model, we reconstruct the
higher-order U.S. air traffic network containing 405 first-order nodes, 9842 second-order nodes, and 10 676
directed edges with transition probabilities larger than 0.3 (figure 4(c)). Each second-order dependency
vi → vj → vk is represented as a directed edge vj|vi → vk from a second-order node vj|vi to a first-order node
(a target city) vk. For example, the directed edge from Chicago|Atlanta to Atlanta, Chicago|Atlanta→Atlanta
indicates the second-order dependency Atlanta→Chicago→Atlanta. Figure 4(c) shows several clusters
centered around different cities (such as Atlanta, Chicago, Los Angeles, Dallas, and Denver). There are many
directed edges from second-order nodes to the first-order node in a cluster; this demonstrates that the
airports in those cities are busy transportation hubs that serve a large passenger flow in the U.S. The results
are consistent with reality: As shown in the list of the busiest airports by passenger traffic distributed by
Airports Council International, Hartsfield-Jackson Atlanta International Airport, O’Hare International
Airport in Chicago, Los Angeles International Airport, Dallas/Fort Worth International Airport, and Denver
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Figure 4. Significant second-order dependencies extracted from the U.S. air traffic network. (a) Significant second-order
dependencies at the significance level of α= 0.01 are highlighted in saddle brown. The horizontal axis represents the target cities
in second-order dependencies, such as Baltimore and Detroit. The vertical axis represents the series of the first two cities in
second-order dependencies, such as Branson|Atlanta. (b) A Sankey diagram describes the traffic volume of passengers departing
from Atlanta. (c) Higher-order U.S. air traffic network. Based on significant second-order dependencies, we reconstruct a
higher-order U.S. air traffic network composed of 405 first-order nodes (a target city vk), 9842 second-order nodes (a city vj given
a city vi, denoted as vj|vi), and 10 676 directed edges (vj|vi → vk) with transition probabilities greater than 0.3. Several clusters are
centered around different cities (such as Atlanta, Chicago, Los Angeles, Dallas, and Denver), represented in distinct colors. In
addition, two clusters composed of second-order nodes pointing to Atlanta and Dallas are represented in detail.

Table 3. Second-order dependencies captured by four algorithms in three real-world datasets. N(d) represents the number of patterns
captured by each method.

APS dataset DB1B dataset Enron email dataset

Algorithm N(d) Runtime (s) N(d) Runtime (s) N(d) Runtime (s)

PrefixSpan 8 124.18 100 444.04 138 328.04
MON 458 998.32 285 298 29 188.82 2948 6127.82

BuildHON+ 36 10.44 65 000 45.11 1100 22.58
SkDM 44 12.24 65 212 55.24 1299 26.04

International Airport were the top 5 busiest airports in the U.S. in 2011 (The world’s top 100 airports: listed,
ranked and mapped).

4.4. Extracting higher-order dependencies in email communications
We finally perform SkDM on the Enron email dataset to capture significant higher-order dependencies in
human communications. The Enron email dataset consists of 116 525 messages sent between 146 senior
executives of Enron from 1999 to 2003. Table 3 shows that 1299 significant second-order dependencies
extracted from the network accounted for 1.28% of all 94 176 potential second-order dependencies.
Moreover, SkDM is faster than MON and PrefixSpan in capturing higher-order dependencies. This
demonstrates that our method is adept at selecting vital higher-order dependencies from large datasets. In
addition, the percentage of significant dependencies in 2948 existing second-order patterns is as high as
44.06%, which shows a strong second-order Markov effect in email communications. Furthermore, in
figure 5(a), we can observe a diagonal line marked by significant second-order dependencies. This suggests a
significant commuting pattern in email communications between executives; that is, the next receiver to
which an email is forwarded is influenced by the email’s previous sender. When an executive received an
email, the executive tended to reply to the sender and forward the received email to other executives. A
Sankey diagram additionally describes the emails forwarded by John J. Lavorato (47), a chief operating
officer of Enron Americas (figure 5(b)). We find that after receiving emails from Lavorato, most users replied
to Lavorato and forwarded the received messages to others.

Based on significant second-order dependencies, we construct the higher-order Enron email network,
including 131 first-order nodes (an executive k), 645 second-order nodes (an executive j given an executive i,
denoted as j|i), and 1299 directed edges (j|i→k; figure 5(c)). Using the Louvain method, second-order nodes
j|i and its target node k form several tightly knit clusters in figure 5(c). Furthermore, we select 13 clusters
centered around different executives and present their structures in detail. As shown in figure 5(c), the
conditions i of most second-order nodes j|i are the same as the target nodes k they point to in a cluster. For
example, when 16 second-order nodes point to the target node 47|, 14 of them take 47 as conditions, denoted
as j|47 (approximately 88%). This also confirms the significant commuting pattern in email
communications; that is, an individual jmost likely sends an email to an individual i if they received an email
from j.
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Figure 5. Significant second-order dependencies extracted from the Enron email network. (a) Significant second-order
dependencies at the significance level of α= 0.01 are highlighted in saddle brown. The horizontal axis represents the target
receivers in second-order dependencies. For example, John J. Lavorato is the target receiver of the second-order dependency John
J. Lavorato→Greg L. Whalley→John J. Lavorato. The vertical axis represents the series of the first two individuals in second-order
dependencies, such as Greg L. Whalley|John J. Lavorato. (b) A Sankey diagram represents the emails forwarded by John J.
Lavorato. (c) Higher-order Enron email network. The higher-order Enron email network comprises first-order nodes (an
executive i), second-order nodes (an executive j given an executive i, denoted as j|i) and directed edges that take the number of
emails between nodes as their edge weights. Each executive is indexed by a number, e.g. the index of John J. Lavorato is 47. Using
the Louvain method, there are several clusters centered on different executives, represented in different colors. The details of
clusters centered around B. Rapp (9), K. Watson (72), M. Lokay (90), S. Harris (77), R. Hayslett (134), M. Heard (113), S.
Shackleton (107), M. Taylor (58), L. Kitchen (2), and John J. Lavorato (47) are also shown.

5. Conclusion and discussion

Given that the exponentially increased number of higher-order dependencies introduces problems such as
high computational complexity and ‘state space explosion’, in this paper, we propose a statistical test
framework-significant k-order dependencies mining (SkDM)-based on hypothesis testing and the MCMC to
identify significant higher-order dependencies from systems. The simulation results indicate that our
method can capture all embedded higher-order dependencies at different preset significance levels of
α= 0.01, 0.05, 0.1 and calculate the p-values of all higher-order dependencies. While existing
state-of-the-arts extract higher-order dependencies with high Type I and Type II error rates, our method
demonstrates a robust capability for accurately identifying all significant dependencies, maintaining a low
Type I error rate and without generating any Type II error across diverse experimental settings. Empirical
results on three real-world networks (the APS citation network, the U.S. air traffic network, and the Enron
email network) demonstrate that our method can eliminate maximumly 98.7% insignificant higher-order
dependencies in large datasets. By capturing significant dependencies, our method can greatly reduce the
computational complexity of network analysis tasks. It is worth noting, that in human communications, the
proportion of significant dependencies in existing higher-order patterns is considerable (44.06%). Moreover,
using SkDM, HONmodels can precisely describe true network flow patterns in systems, such as commuting
patterns, where the network flow often returns to the component it previously visited.

Further research may consider the following two aspects. On the one hand, SkDM can be generalized to
select different orders of dependencies from complex systems such as third-order or fourth-order
dependencies. Additional research should determine how to reconstruct HONs, which could simultaneously
embed variable orders of dependencies. On the other hand, higher-order Markov models offer a
temporal-topological perspective for understanding complex systems. It is essential to extend SkDM to
investigate how significant higher-order dependencies influence the dynamical processes taking place on
time-varying systems, such as epidemic spreading and diffusion.
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Figure 6. Distribution of z-scores and p-values of dependencies in the CK1 dataset. (a) The distribution of z-scores of all potential
second-order dependencies is closely approximated by a normal distribution. (b) The distribution of p-values of all potential
second-order dependencies.

Figure 7. Distribution of z-scores and p-values of dependencies in the CK2 dataset. (a) The distribution of z-scores of potential
second-order dependencies (without twelve elaborately designed second-order dependencies on pages 25, 51 and 77) is closely
approximated by a normal distribution. (b) The distribution of p-values of potential second-order dependencies (without twelve
elaborately designed second-order dependencies on pages 25, 51 and 77).
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Figure 8. The Sankey diagram of the first-order APS citation network. Different colors represent different journals in the APS
citation network. The thickness of each edge is proportional to the citation flow that passes through it.

Table 4. p-values of dependencies at preset significance levels of α= 0.01,0.05,0.1 in the CK1 dataset.

Second-order dependency p-value Second-order dependency p-value

31→32→33 0.0080 64→65→66 0.0501
31→32→42 0.0080 64→65→75 0.0501
22→32→33 0.0007 60→61→62 0.0566
22→32→42 0.0007 60→61→71 0.0566
33→34→35 0.0134 79→70→71 0.0685
33→34→44 0.0134 79→70→80 0.0685
24→34→35 0.0134 63→64→65 0.0772
24→34→44 0.0134 63→64→74 0.0772
19→29→20 0.0248 68→78→79 0.0773
19→29→39 0.0248 68→78→88 0.0773
52→53→54 0.0295 18→19→10 0.0866
52→53→63 0.0295 18→19→29 0.0866
45→55→56 0.0378 55→65→66 0.0869
45→55→65 0.0378 55→65→75 0.0869
51→52→53 0.0413 87→97→7 0.0874
51→52→62 0.0413 87→97→98 0.0874
61→71→72 0.0422 34→35→36 0.0953
61→71→81 0.0422 34→35→45 0.0953
50→51→52 0.0466 12→13→14 0.0979
50→51→61 0.0466 12→13→23 0.0979
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Table 5. z-scores of dependencies at preset significance levels of α= 0.01,0.05,0.1 in the CK1 dataset.

Second-order dependency z-score Second-order dependency z-score

31→32→33 2.6305 64→65→66 1.9595
31→32→42 −2.6305 64→65→75 −1.9595
22→32→33 −3.3927 60→61→62 1.9064
22→32→42 3.3927 60→61→71 −1.9064
33→34→35 −2.4737 79→70→71 1.8215
33→34→44 2.4737 79→70→80 −1.8215
24→34→35 2.4736 63→64→65 1.7673
24→34→44 −2.4736 63→64→74 −1.7673
19→29→20 −2.2451 68→78→79 1.7667
19→29→39 2.2451 68→78→88 −1.7667
52→53→54 −2.177 18→19→10 1.7134
52→53→63 2.177 18→19→29 −1.7134
45→55→56 2.0775 55→65→66 1.7117
45→55→65 −2.0775 55→65→75 −1.7117
51→52→53 2.0407 87→97→7 1.7095
51→52→62 −2.0407 87→97→98 −1.7095
61→71→72 2.0316 34→35→36 1.668
61→71→81 −2.0316 34→35→45 −1.668
50→51→52 1.9895 12→13→14 1.6551
50→51→61 −1.9895 12→13→23 −1.6551

Table 6. p-values of dependencies at preset significance levels of α= 0.01,0.05,0.1 in the CK2 dataset. The twelve elaborately designed
second-order dependencies on pages 25, 51 and 77 are: 15→25→26, 15→25→35, 24→25→26, 24→25→35, 41→51→52,
41→51→61, 50→51→52, 50→51→61, 67→77→78, 67→77→87, 76→77→78 and 76→77→87.

Second-order dependency p-value Second-order dependency p-value

15→25→26 0 26→36→46 0.0415
15→25→35 0 26→36→37 0.0415
24→25→26 0 29→20→21 0.0474
24→25→35 0 29→20→30 0.0474
41→51→52 0 11→12→13 0.0485
41→51→61 0 11→12→22 0.0485
50→51→52 0 52→53→54 0.0569
50→51→61 0 52→53→63 0.0569
67→77→78 0 74→84→85 0.0584
67→77→87 0 74→84→94 0.0584
76→77→78 0 16→26→27 0.0588
76→77→87 0 16→26→36 0.0588
71→81→82 0.0094 39→49→40 0.0650
71→81→91 0.0094 39→49→59 0.0650
80→81→82 0.0089 66→76→77 0.0654
80→81→91 0.0089 66→76→86 0.0654
69→79→89 0.0195 17→27→28 0.0708
69→79→70 0.0195 17→27→37 0.0708
78→79→70 0.0212 63→64→65 0.0867
78→79→89 0.0212 63→64→74 0.0867
35→36→37 0.0285 27→28→38 0.0886
35→36→46 0.0285 27→28→29 0.0886
43→53→54 0.0345 1→11→21 0.0889
43→53→63 0.0345 1→11→12 0.0889
48→49→40 0.0412 10→11→12 0.0946
48→49→59 0.0412 10→11→21 0.0946
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Table 7. z-scores of dependencies at preset significance levels of α= 0.01,0.05,0.1 in the CK2 dataset. The twelve elaborately designed
second-order dependencies on pages 25, 51 and 77 are: 15→25→26, 15→25→35, 24→25→26, 24→25→35, 41→51→52,
41→51→61, 50→51→52, 50→51→61, 67→77→78, 67→77→87, 76→77→78 and 76→77→87.

Second-order dependency z-score Second-order dependency z-score

15→25→26 95.5157 26→36→46 2.0380
15→25→35 −95.5157 26→36→37 −2.0380
24→25→26 97.1868 29→20→21 1.9831
24→25→35 −97.1868 29→20→30 −1.9831
41→51→52 99.0834 11→12→13 1.9728
41→51→61 −99.0834 11→12→22 −1.9728
50→51→52 96.1407 52→53→54 1.9043
50→51→61 −96.1407 52→53→63 −1.9043
67→77→78 95.5764 74→84→85 1.8925
67→77→87 −95.5764 74→84→94 −1.8925
76→77→78 95.4083 16→26→27 1.8893
76→77→87 −95.4083 16→26→36 −1.8893
71→81→82 2.5990 39→49→40 1.8454
71→81→91 −2.5990 39→49→59 −1.8454
80→81→82 2.6141 66→76→77 1.8427
80→81→91 −2.6141 66→76→86 −1.8427
69→79→89 2.3357 17→27→28 1.8064
69→79→70 −2.3357 17→27→37 −1.8064
78→79→70 2.3038 63→64→65 1.7131
78→79→89 −2.3038 63→64→74 −1.7131
35→36→37 2.1909 27→28→38 1.7031
35→36→46 −2.1909 27→28→29 −1.7031
43→53→54 2.1145 1→11→21 1.7014
43→53→63 −2.1145 1→11→12 −1.7014
48→49→40 2.0411 10→11→12 1.6717
48→49→59 −2.0411 10→11→21 −1.6717

Table 8. Second-order dependencies captured by the MONmethod in the CK2 dataset with different values of pd.

MON pd = 0.10 pd = 0.20 pd = 0.30

N(d) = N(TS)+N(FS) 400 400 400
N(FS) 388 388 388
N(TNS) 0 0 0
N(FNS) 0 0 0
N(TS) 12 12 12

α= N(FS)
N(FS)+N(TNS) 1.00 1.00 1.00

β = N(FNS)
N(FNS)+ N(TS) 0.00 0.00 0.00

Table 9. Second-order dependencies captured by the BuildHON+method in the CK2 dataset with different values of pd.

BuildHON+ pd = 0.10 pd = 0.20 pd = 0.30

N(d) = N(TS)+N(FS) 12 12 0
N(FS) 0 0 0
N(TNS) 388 388 388
N(FNS) 0 0 12
N(TS) 12 12 0

α= N(FS)
N(FS)+N(TNS) 0.00 0.00 0.00

β = N(FNS)
N(FNS)+ N(TS) 0.00 0.00 1.00

Table 10. Basic statistics of three real-network datasets. |V| and |E| is the number of components and directed pairwise links. The
domain is the research field of a dataset.

Network |V| |E| Domain

APS citation network 468 291 906 398 Citation
US air traffic network 413 19 415 369 Transportation
Enron email network 146 116 525 Communication
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Table 11. Journals in the APS dataset.

Journal Journal Code Abbreviation Research Fields Number of articles

Physical Review
Letters

Phys. Rev. Lett. PRL Important fundamental research
in allfields of physics

149 766

Physical Review A Phys. Rev. A PRA Atomic, molecular, and optical
physics andquantum
information

53 655

Physical Review B Phys. Rev. B PRB Condensed matter and materials
physics

137 999

Physical Review C Phys. Rev. C PRC Nuclear physics 29 935
Physical Review D Phys. Rev. D PRD Particles, fields, gravitation,

andcosmology
56 616

Physical Review E Phys. Rev. E PRE Statistical, nonlinear, biological,
andsoft matter physics

35 944

Physical Review
Accelerators and
Beams

Phys. Rev. Accel. Beams PRAB Accelerators and Beams 1257

Reviews of Modern
Physics

Rev. Mod. Phys RMP Reviews of physics 2926

Physics Physics PHY Latest researches on all aspects of
physics

193

ORCID iDs

Jiaxu Li https://orcid.org/0000-0002-3740-1866
Xin Lu https://orcid.org/0000-0002-3547-6493
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